Friday, 20 September 2019

Movimento média vs autorregressivo


Média Móvel Integrada Autoregressiva - ARIMA DEFINIÇÃO de Média Móvel Integrada Autoregressiva - ARIMA Modelo de análise estatística que utiliza dados de séries temporais para prever tendências futuras. É uma forma de análise de regressão que procura predizer movimentos futuros ao longo da caminhada aparentemente aleatória feita pelas ações e pelo mercado financeiro examinando as diferenças entre os valores da série em vez de usar os valores dos dados reais. Lags das séries diferenciadas são referidos como auto-regressivos e os atrasos dentro dos dados previstos são referidos como média móvel. BREAKING DOWN Média Movente Integrada Autoregressiva - ARIMA Este tipo de modelo é geralmente referido como ARIMA (p, d, q), com os inteiros referindo-se ao autorregressivo. Integradas e móveis do conjunto de dados, respectivamente. A modelagem ARIMA pode levar em conta tendências, sazonalidade. Ciclos, erros e aspectos não-estacionários de um conjunto de dados ao fazer forecast. Autoregressive Média Móvel ARMA (p, q) Modelos para a Análise de Série de Tempo - Parte 1 No último artigo nós olhamos para passeios aleatórios e ruído branco como modelos básicos de séries temporais Para determinados instrumentos financeiros, como os preços diários de acções e de acções. Descobrimos que, em alguns casos, um modelo de caminhada aleatória foi insuficiente para captar o comportamento de autocorrelação total do instrumento, o que motiva modelos mais sofisticados. No próximo par de artigos vamos discutir três tipos de modelo, a saber, o Modelo Autoregressivo (AR) de ordem p, o Modelo de Média Móvel (MO) de ordem q eo modelo de Média Móvel Movida Autogressiva (ARMA) de ordem p , Q. Estes modelos nos ajudarão a tentar capturar ou explicar mais da correlação serial presente dentro de um instrumento. Em última análise, eles nos fornecerão um meio de prever os preços futuros. No entanto, é bem sabido que as séries temporais financeiras possuem uma propriedade conhecida como agrupamento de volatilidade. Ou seja, a volatilidade do instrumento não é constante no tempo. O termo técnico para esse comportamento é conhecido como heterocedasticidade condicional. Como os modelos AR, MA e ARMA não são condicionalmente heteroscedásticos, ou seja, não levam em conta o agrupamento de volatilidade, acabaremos por precisar de um modelo mais sofisticado para nossas previsões. Tais modelos incluem o modelo condutor condicional condicional (ARCH) e modelo Heteroskedastic condicional condicional generalizado (GARCH), e as muitas variantes dele. GARCH é particularmente bem conhecido em finanças de quant e é usado primeiramente para simulações financeiras da série de tempo como um meio de estimar o risco. No entanto, como com todos os artigos do QuantStart, eu quero construir esses modelos a partir de versões mais simples para que possamos ver como cada nova variante muda nossa capacidade de previsão. Apesar de AR, MA e ARMA serem modelos de séries temporais relativamente simples, eles são a base de modelos mais complicados, como a Média Móvel Integrada Autoregressiva (ARIMA) ea família GARCH. Por isso, é importante que os estudemos. Uma das nossas primeiras estratégias de negociação na série de artigos de séries temporais será combinar ARIMA e GARCH para prever preços n períodos de antecedência. No entanto, teremos que esperar até que discutimos ambos ARIMA e GARCH separadamente antes de aplicá-los a uma estratégia real. Como vamos prosseguir Neste artigo vamos esboçar alguns novos conceitos de série de tempo que bem precisam para os restantes métodos, Estacionário eo critério de informação Akaike (AIC). Subseqüentemente a esses novos conceitos, seguiremos o padrão tradicional para estudar novos modelos de séries temporais: Justificativa - A primeira tarefa é fornecer uma razão por que estavam interessados ​​em um determinado modelo, como quants. Por que estamos introduzindo o modelo de séries temporais Que efeitos pode capturar O que ganhamos (ou perdemos) adicionando complexidade extra Definição - Precisamos fornecer a definição matemática completa (e notação associada) do modelo de série de tempo para minimizar Qualquer ambiguidade. Propriedades de Segunda Ordem - Vamos discutir (e em alguns casos derivar) as propriedades de segunda ordem do modelo de séries temporais, que inclui sua média, sua variância e sua função de autocorrelação. Correlograma - Usaremos as propriedades de segunda ordem para traçar um correlograma de uma realização do modelo de séries temporais para visualizar seu comportamento. Simulação - Vamos simular as realizações do modelo de série de tempo e, em seguida, ajustar o modelo para estas simulações para garantir que temos implementações precisas e compreender o processo de montagem. Dados Financeiros Reais - Ajustaremos o modelo da série de tempo aos dados financeiros reais e consideraremos o correlograma dos resíduos para ver como o modelo explica a correlação serial na série original. Previsão - Vamos criar n-passo adiante previsões do modelo de série de tempo para realizações particulares, a fim de produzir sinais de negociação. Quase todos os artigos que escrevo sobre modelos de séries temporais cairão nesse padrão e nos permitirá comparar facilmente as diferenças entre cada modelo à medida que adicionamos mais complexidade. Vamos começar por olhar para a estacionaridade rigorosa ea AIC. Estritamente estacionária Nós fornecemos a definição de estacionariedade no artigo sobre correlação serial. No entanto, porque vamos entrar no reino de muitas séries financeiras, com várias freqüências, precisamos ter certeza de que nossos (eventuais) modelos levam em conta a volatilidade variável no tempo dessas séries. Em particular, precisamos considerar sua heterocedasticidade. Encontraremos este problema quando tentarmos ajustar certos modelos a séries históricas. Geralmente, nem toda a correlação seriada nos resíduos dos modelos ajustados pode ser considerada sem levar em consideração a heterocedasticidade. Isso nos leva de volta à estacionária. Uma série não é estacionária na variância se tiver volatilidade variável no tempo, por definição. Isso motiva uma definição mais rigorosa de estacionariedade, ou seja, a estacionariedade estrita: estritamente estacionária série A modelo de série temporal, é estritamente estacionário se a distribuição estatística conjunta dos elementos x, ldots, x é o mesmo que xm, ldots, xm, Para todos ti, m. Pode-se pensar nesta definição como simplesmente que a distribuição da série temporal é inalterada para qualquer deslocamento abritário no tempo. Em particular, a média ea variância são constantes no tempo para uma série estritamente estacionária ea autocovariância entre xt e xs (digamos) depende apenas da diferença absoluta de t e s, t-s. Estaremos revisitando as séries estritamente estacionárias em futuras postagens. Critério de Informações Akaike Eu mencionei em artigos anteriores que eventualmente precisaria considerar como escolher entre melhores modelos separados. Isto é verdade não só de análise de séries temporais, mas também de aprendizagem de máquinas e, em termos mais gerais, de estatísticas em geral. Os dois principais métodos que usaremos (por enquanto) são o Critério de Informação Akaike (AIC) e o Critério de Informação Bayesiano (conforme avançamos com nossos artigos sobre Estatísticas Bayesianas). Bem, brevemente considerar a AIC, como ele será usado na Parte 2 do ARMA artigo. AIC é essencialmente uma ferramenta para auxiliar na seleção do modelo. Ou seja, se tivermos uma seleção de modelos estatísticos (incluindo séries temporais), então a AIC estima a qualidade de cada modelo, em relação aos outros que temos disponíveis. Baseia-se na teoria da informação. Que é um tópico altamente interessante, profundo que infelizmente não podemos entrar em muito detalhes sobre. Ele tenta equilibrar a complexidade do modelo, que neste caso significa o número de parâmetros, com o quão bem ele se encaixa os dados. Vamos fornecer uma definição: Critério de Informação Akaike Se tomarmos a função de verossimilhança para um modelo estatístico, que tem k parâmetros, e L maximiza a probabilidade. Então o Critério de Informação Akaike é dado por: O modelo preferido, a partir de uma seleção de modelos, tem o mínimo AIC do grupo. Você pode ver que a AIC cresce à medida que o número de parâmetros, k, aumenta, mas é reduzido se a probabilidade de log negativo aumentar. Essencialmente penaliza modelos que são overfit. Vamos criar modelos AR, MA e ARMA de várias ordens e uma maneira de escolher o melhor modelo para um determinado conjunto de dados é usar o AIC. Isto é o que bem estar fazendo no próximo artigo, principalmente para modelos ARMA. Modelos auto-regressivos de ordem p O primeiro modelo que irão considerar, que forma a base da Parte 1, é o modelo Autoregressivo de ordem p, muitas vezes abreviado para AR (p). No artigo anterior consideramos a caminhada aleatória. Onde cada termo, xt é dependente unicamente do termo anterior, x e um termo estocástico de ruído branco, wt: O modelo autorregressivo é simplesmente uma extensão da caminhada aleatória que inclui termos mais atrás no tempo. A estrutura do modelo é linear. Que é o modelo depende linearmente sobre os termos anteriores, com coeficientes para cada termo. Isto é de onde o regressivo vem em autorregressivo. É essencialmente um modelo de regressão onde os termos anteriores são os preditores. Modelo auto-regressivo de ordem p Um modelo de série temporal,, é um modelo autorregressivo de ordem p. AR (p), se: begin xt alfa1 x ldots alfa x wt soma p alphai x wt end Onde está o ruído branco e alphai em mathbb, com alfap neq 0 para um processo autorregressivo p-order. Se considerarmos o Backward Shift Operator. (Veja o artigo anterior), então podemos reescrever o acima como uma função theta de: begin thetap () xt (1 - alpha1 - alpha2 2 - ldots - alphap) xt wt end Talvez a primeira coisa a notar sobre o modelo AR (p) É que uma caminhada aleatória é simplesmente AR (1) com alfa1 igual à unidade. Como já dissemos acima, o modelo autogressivo é uma extensão da caminhada aleatória, então isso faz sentido. É fácil fazer previsões com o modelo AR (p), para qualquer tempo t, uma vez que temos os coeficientes alfa determinados, nossa estimativa Simplesmente torna-se: começar hat t alfa1 x ldots alphap x final Por isso podemos fazer n-passo adiante previsões produzindo chapéu t, chapéu, chapéu, etc até chapéu. De fato, quando considerarmos os modelos ARMA na Parte 2, usaremos a função R predict para criar previsões (juntamente com bandas de intervalo de confiança de erro padrão) que nos ajudarão a produzir sinais de negociação. Estacionariedade para Processos Autoregressivos Um dos aspectos mais importantes do modelo AR (p) é que nem sempre é estacionário. De fato, a estacionaridade de um modelo particular depende dos parâmetros. Ive tocou sobre isso antes em um artigo anterior. Para determinar se um processo AR (p) é estacionário ou não, precisamos resolver a equação característica. A equação característica é simplesmente o modelo autorregressivo, escrito em forma de mudança para trás, definido como zero: resolvemos esta equação para. Para que o processo autorregressivo particular seja estacionário, precisamos que todos os valores absolutos das raízes desta equação excedam a unidade. Esta é uma propriedade extremamente útil e nos permite calcular rapidamente se um processo AR (p) está parado ou não. Vamos considerar alguns exemplos para tornar esta idéia concreta: Random Walk - O processo AR (1) com alfa1 1 tem a equação característica theta 1 -. Claramente isso tem raiz 1 e como tal não é estacionário. AR (1) - Se escolhemos fração alfa1 obtemos xt frac x wt. Isto nos dá uma equação característica de 1 - frac 0, que tem uma raiz 4 gt 1 e assim este processo particular de AR (1) é estacionário. AR (2) - Se definimos alpha1 alpha2 frac, então temos xt frac x frac x wt. Sua equação característica se torna - frac () () 0, que dá duas raízes de 1, -2. Uma vez que esta tem uma raiz unitária é uma série não-estacionária. No entanto, outras séries AR (2) podem ser estacionárias. Propriedades da Segunda Ordem A média de um processo AR (p) é zero. No entanto, as autocovariâncias e autocorrelações são dadas por funções recursivas, conhecidas como as equações de Yule-Walker. As propriedades completas são dadas abaixo: begin mux E (xt) 0 end começo gammak soma p alphai gama, enspace k 0 end começo rhok sum p alphai rho, enspace k 0 end Note que é necessário conhecer os valores dos parâmetros alfai antes de Calculando as autocorrelações. Agora que weve declarou as propriedades de segunda ordem podemos simular várias ordens de AR (p) e traçar os correlogramms correspondentes. Simulações e Correlogramas Vamos começar com um processo AR (1). Isso é semelhante a uma caminhada aleatória, exceto que alfa1 não tem que igualar a unidade. Nosso modelo vai ter alpha1 0,6. O código R para criar esta simulação é dado como se segue: Note que o nosso loop for é executado de 2 a 100, não 1 a 100, como xt-1 quando t0 não é indexável. Similarmente para processos AR (p) de ordem mais alta, t deve variar de p a 100 neste loop. Podemos traçar a realização deste modelo e seu correlogram associado usando a função de layout: Vamos agora tentar montar um processo AR (p) para os dados simulados que acabamos de gerar, para ver se podemos recuperar os parâmetros subjacentes. Você pode se lembrar que nós realizamos um procedimento semelhante no artigo sobre ruído branco e passeios aleatórios. Como se vê, R fornece um comando útil ar para caber modelos autorregressivos. Podemos usar este método para nos dizer primeiro a melhor ordem p do modelo (conforme determinado pela AIC acima) e fornecer-nos com estimativas de parâmetros para o alphai, que podemos então usar para formar intervalos de confiança. Para completar, vamos recriar a série x: Agora usamos o comando ar para ajustar um modelo autorregressivo ao nosso processo AR (1) simulado, usando estimativa de máxima verossimilhança (MLE) como procedimento de ajuste. Primeiramente, extrairemos a melhor ordem obtida: O comando ar determinou com sucesso que nosso modelo de série cronológica subjacente é um processo AR (1). Podemos então obter as estimativas de parâmetro (s) alfa (s): O procedimento MLE produziu uma estimativa, somando 0,523, que é ligeiramente inferior ao verdadeiro valor de alfa1 0,6. Finalmente, podemos usar o erro padrão (com a variância assintótica) para construir 95 intervalos de confiança em torno do (s) parâmetro (s) subjacente (s). Para isso, simplesmente criamos um vetor c (-1.96, 1.96) e depois o multiplicamos pelo erro padrão: O parâmetro verdadeiro está dentro do intervalo de confiança de 95, como esperamos do fato de termos gerado a realização a partir do modelo especificamente . Como se mudarmos o alpha1 -0.6 Como antes podemos ajustar um modelo AR (p) usando ar: Mais uma vez recuperamos a ordem correta do modelo, com uma estimativa muito boa hat -0.597 de alfa1-0.6. Verificamos também que o verdadeiro parâmetro está novamente dentro do intervalo de confiança de 95%. Vamos adicionar um pouco mais de complexidade aos nossos processos autorregressivos, simulando um modelo de ordem 2. Em particular, vamos definir alpha10.666, mas também definir alpha2 -0.333. Heres o código completo para simular e plotar a realização, bem como o correlograma de uma série como: Como antes podemos ver que o correlogram difere significativamente do ruído branco, como wed esperar. Existem picos estatisticamente significativos em k1, k3 e k4. Mais uma vez, iríamos usar o comando ar para ajustar um modelo AR (p) à nossa realização subjacente AR (2). O procedimento é semelhante ao do ajuste AR (1): A ordem correta foi recuperada e as estimativas do parâmetro hat 0.696 e hat -0.395 não estão muito longe dos valores dos parâmetros verdadeiros de alfa10.666 e alfa2-0.333. Observe que recebemos uma mensagem de aviso de convergência. Observe também que R realmente usa a função arima0 para calcular o modelo AR. Como aprendemos em artigos subseqüentes, os modelos AR (p) são simplesmente modelos ARIMA (p, 0, 0) e, portanto, um modelo AR é um caso especial de ARIMA sem componente de Moving Average (MA). Bem, também estar usando o comando arima para criar intervalos de confiança em torno de vários parâmetros, razão pela qual weve negligenciado fazê-lo aqui. Agora que nós criamos alguns dados simulados, é hora de aplicar os modelos AR (p) às séries temporais de ativos financeiros. Dados financeiros Amazon Inc. Permite começar por obter o preço da ação para a Amazônia (AMZN) usando quantmod como no último artigo: A primeira tarefa é sempre traçar o preço para uma breve inspeção visual. Neste caso, bem usando os preços de fechamento diário: Você vai notar que o quantmod adiciona alguma formatação para nós, ou seja, a data, e um gráfico um pouco mais bonito do que os gráficos R habituais: Vamos agora tomar os retornos logarítmicos de AMZN e, em seguida, o primeiro - order da série, a fim de converter a série de preços originais de uma série não-estacionária para uma (potencialmente) estacionária. Isso nos permite comparar maçãs com maçãs entre ações, índices ou qualquer outro ativo, para uso em estatísticas multivariadas posteriores, como no cálculo de uma matriz de covariância. Se você quiser uma explicação detalhada sobre por que os retornos de log são preferíveis, dê uma olhada neste artigo mais em Quantivity. Permite criar uma nova série, amznrt. Para manter nossos retornos de registro diferenciados: Mais uma vez, podemos plotar a série: Nesta fase, queremos traçar o correlograma. Estavam olhando para ver se a série diferenciada parece ruído branco. Se não houver, então existe correlação serial inexplicada, que pode ser explicada por um modelo autorregressivo. Observamos um pico estatisticamente significativo em k2. Daí há uma possibilidade razoável de correlação seriada inexplicada. Lembre-se, porém, de que isso pode ser devido ao viés de amostragem. Como tal, podemos tentar montar um modelo AR (p) para a série e produzir intervalos de confiança para os parâmetros: Ajustar o modelo autorregressivo ar às séries diferenciadas de primeira ordem de preços de log produz um modelo AR (2), com hat -0.0278 E chapéu -0,0687. Ive também saída a variância austóptica para que possamos calcular erros padrão para os parâmetros e produzir intervalos de confiança. Queremos ver se zero é parte do intervalo de confiança 95, como se fosse, ele reduz a nossa confiança de que temos um verdadeiro processo AR (2) subjacente para a série AMZN. Para calcular os intervalos de confiança no nível 95 para cada parâmetro, usamos os seguintes comandos. Tomamos a raiz quadrada do primeiro elemento da matriz de variância assintótica para produzir um erro padrão, então criamos intervalos de confiança multiplicando-o por -1,96 e 1,96, respectivamente, para o nível 95: Note que isso se torna mais direto quando se usa a função arima , Mas esperar bem até a parte 2 antes de introduzi-la corretamente. Assim, podemos ver que para alfa1 zero está contido dentro do intervalo de confiança, enquanto que para alfa2 zero não está contido no intervalo de confiança. Portanto, devemos ter muito cuidado ao pensar que realmente temos um modelo generative AR (2) subjacente para AMZN. Em particular, observamos que o modelo autorregressivo não leva em conta o agrupamento de volatilidade, o que leva ao agrupamento da correlação serial em séries temporais financeiras. Quando consideramos os modelos ARCH e GARCH em artigos posteriores, iremos explicar isso. Quando chegarmos a usar a função arima completa no próximo artigo, faremos previsões da série diária de preços de registro para nos permitir criar sinais de negociação. SampP500 US Equity Index Junto com ações individuais também podemos considerar o US Equity Index, o SampP500. Vamos aplicar todos os comandos anteriores a esta série e produzir as parcelas como antes: Nós podemos traçar os preços: Como antes, bem criar a diferença de primeira ordem dos preços de fechamento de log: Mais uma vez, podemos traçar a série: É claro Deste gráfico que a volatilidade não é estacionária no tempo. Isto também se reflete na trama do correlograma. Existem muitos picos, incluindo k1 e k2, que são estatisticamente significativos para além de um modelo de ruído branco. Além disso, vemos evidências de processos de memória longa, pois existem picos estatisticamente significativos em k16, k18 e k21: Em última análise, precisamos de um modelo mais sofisticado do que um modelo autorregressivo de ordem p. No entanto, nesta fase ainda podemos tentar ajustar esse modelo. Vamos ver o que temos se fizermos isso: Usando ar produz um modelo AR (22), ou seja, um modelo com 22 parâmetros não-zero O que isso nos diz É indicativo que há provavelmente muito mais complexidade na correlação serial do que Um modelo linear simples de preços passados ​​pode realmente explicar. No entanto, já sabíamos isso porque podemos ver que há uma correlação serial significativa na volatilidade. Por exemplo, considere o período altamente volátil em torno de 2008. Isso motiva o próximo conjunto de modelos, a saber, a média móvel MA (q) ea média móvel ARREA (p, q). Bem, aprender sobre estes dois na Parte 2 deste artigo. Como mencionamos repetidamente, estes nos levarão finalmente à família de modelos ARIMA e GARCH, os quais fornecerão um ajuste muito melhor à complexidade de correlação serial do Samp500. Isso nos permitirá melhorar significativamente nossas previsões e, em última análise, produzir estratégias mais rentáveis. Modelos Autoregressivos Em um modelo de regressão múltipla, projetamos a variável de interesse usando uma combinação linear de preditores. Em um modelo de autorregressão, projetamos a variável de interesse usando uma combinação linear de valores passados ​​da variável. O termo regressão automática indica que é uma regressão da variável contra si mesma. Assim, um modelo autorregressivo de ordem p pode ser escrito como onde c é uma constante e et é ruído branco. Isto é como uma regressão múltipla, mas com valores defasados ​​de yt como preditores. Referimo-nos a isto como um modelo AR (p). Modelos auto-regressivos são notavelmente flexíveis no manuseio de uma ampla gama de diferentes padrões de séries temporais. As duas séries na Figura 8.5 mostram séries de um modelo AR (1) e um modelo AR (2). Alterando os parâmetros phi1, dots, phip resulta em diferentes padrões de séries temporais. A variância do termo de erro e só mudará a escala da série, não os padrões. Figura 8.5: Dois exemplos de dados de modelos autorregressivos com diferentes parâmetros. Esquerda: AR (1) com yt 18 -0,8y et. Direita: AR (2) com yt 8 ​​1,3y -0,7y et. Em ambos os casos, et é normalmente distribuído ruído branco com média zero e variância um. Para um modelo AR (1): Quando phi10, yt é equivalente a ruído branco. Quando phi11 e c0, yt é equivalente a uma caminhada aleatória. Quando phi11 e cne0, yt é equivalente a uma caminhada aleatória com drift Quando ph1lt0, yt tende a oscilar entre valores positivos e negativos. Normalmente, restringimos modelos autorregressivos a dados estacionários e, em seguida, algumas restrições sobre os valores dos parâmetros são necessárias. Para um modelo AR (1): -1 lt phi1 lt 1. Para um modelo AR (2): -1 lt phi2 lt 1, phi1phi2 lt 1, phi2-phi1 lt 1. Quando pge3 as restrições são muito mais complicadas. R cuida dessas restrições ao estimar um modelo.2.1 Modelos de média móvel (modelos MA) Modelos de séries temporais conhecidos como modelos ARIMA podem incluir termos auto-regressivos ou termos de média móvel. Na Semana 1, aprendemos um termo autorregressivo em um modelo de séries temporais para a variável x t é um valor retardado de x t. Por exemplo, um termo autorregressivo de atraso 1 é x t-1 (multiplicado por um coeficiente). Esta lição define termos de média móvel. Um termo de média móvel em um modelo de séries temporais é um erro passado (multiplicado por um coeficiente). Vamos (wt desviar N (0, sigma2w)), significando que os w t são identicamente, distribuídos independentemente, cada um com uma distribuição normal com média 0 e a mesma variância. O modelo de média móvel da 1ª ordem, denotado por MA (1) é (xt mu wt theta1w) O modelo de média móvel de 2ª ordem, denotado por MA (2) é (xt mu wt theta1w theta2w) , Denotado por MA (q) é (xt mu wt theta1w theta2w pontos thetaqw) Nota. Muitos livros didáticos e programas de software definem o modelo com sinais negativos antes dos termos. Isso não altera as propriedades teóricas gerais do modelo, embora ele inverta os sinais algébricos de valores de coeficientes estimados e de termos (não-quadrados) nas fórmulas para ACFs e variâncias. Você precisa verificar seu software para verificar se sinais negativos ou positivos foram usados ​​para escrever corretamente o modelo estimado. R usa sinais positivos em seu modelo subjacente, como fazemos aqui. Propriedades Teóricas de uma Série de Tempo com um Modelo MA (1) Observe que o único valor não nulo na ACF teórica é para o atraso 1. Todas as outras autocorrelações são 0. Assim, uma ACF de amostra com uma autocorrelação significativa apenas no intervalo 1 é um indicador de um possível modelo MA (1). Para os estudantes interessados, provas destas propriedades são um apêndice a este folheto. Exemplo 1 Suponha que um modelo MA (1) seja x t 10 w t .7 w t-1. Onde (wt overset N (0,1)). Assim, o coeficiente 1 0,7. O ACF teórico é dado por Um gráfico deste ACF segue. O gráfico apenas mostrado é o ACF teórico para um MA (1) com 1 0,7. Na prática, uma amostra normalmente não proporciona um padrão tão claro. Usando R, simulamos n 100 valores de amostra usando o modelo x t 10 w t .7 w t-1 onde w t iid N (0,1). Para esta simulação, segue-se um gráfico de séries temporais dos dados da amostra. Não podemos dizer muito desse enredo. A ACF de amostra para os dados simulados segue. Observamos que a amostra ACF não corresponde ao padrão teórico do MA subjacente (1), ou seja, que todas as autocorrelações para os atrasos de 1 serão 0 Uma amostra diferente teria uma ACF de amostra ligeiramente diferente mostrada abaixo, mas provavelmente teria as mesmas características gerais. Propriedades teóricas de uma série temporal com um modelo MA (2) Para o modelo MA (2), as propriedades teóricas são as seguintes: Note que os únicos valores não nulos na ACF teórica são para os retornos 1 e 2. As autocorrelações para atrasos maiores são 0 . Assim, uma ACF de amostra com autocorrelações significativas nos intervalos 1 e 2, mas autocorrelações não significativas para atrasos maiores indica um possível modelo MA (2). Iid N (0,1). Os coeficientes são 1 0,5 e 2 0,3. Como este é um MA (2), o ACF teórico terá valores não nulos apenas nos intervalos 1 e 2. Os valores das duas autocorrelações não nulas são: Um gráfico do ACF teórico segue. Como quase sempre é o caso, dados de exemplo não vai se comportar tão perfeitamente como a teoria. Foram simulados n 150 valores de amostra para o modelo x t 10 w t .5 w t-1 .3 w t-2. Onde w t iid N (0,1). O gráfico de série de tempo dos dados segue. Como com o gráfico de série de tempo para os dados de amostra de MA (1), você não pode dizer muito dele. A ACF de amostra para os dados simulados segue. O padrão é típico para situações em que um modelo MA (2) pode ser útil. Existem dois picos estatisticamente significativos nos intervalos 1 e 2, seguidos por valores não significativos para outros desfasamentos. Note que devido ao erro de amostragem, a ACF da amostra não corresponde exactamente ao padrão teórico. ACF para Modelos Gerais MA (q) Uma propriedade dos modelos MA (q) em geral é que existem autocorrelações não nulas para os primeiros q lags e autocorrelações 0 para todos os retornos gt q. Não-unicidade de conexão entre os valores de 1 e (rho1) no modelo MA (1). No modelo MA (1), para qualquer valor de 1. O recíproco 1 1 dá o mesmo valor para Como exemplo, use 0,5 para 1. E então use 1 (0,5) 2 para 1. Você obterá (rho1) 0,4 em ambas as instâncias. Para satisfazer uma restrição teórica chamada invertibilidade. Restringimos modelos MA (1) para ter valores com valor absoluto menor que 1. No exemplo dado, 1 0,5 será um valor de parâmetro permitido, enquanto 1 10,5 2 não. Invertibilidade de modelos MA Um modelo MA é dito ser inversível se for algébrica equivalente a um modelo de ordem infinita convergente. Por convergência, queremos dizer que os coeficientes de RA diminuem para 0 à medida que avançamos no tempo. Invertibilidade é uma restrição programada em séries temporais de software utilizado para estimar os coeficientes de modelos com MA termos. Não é algo que verificamos na análise de dados. Informações adicionais sobre a restrição de invertibilidade para modelos MA (1) são fornecidas no apêndice. Teoria Avançada Nota. Para um modelo MA (q) com um ACF especificado, existe apenas um modelo invertible. A condição necessária para a invertibilidade é que os coeficientes têm valores tais que a equação 1- 1 y-. - q y q 0 tem soluções para y que caem fora do círculo unitário. Código R para os Exemplos No Exemplo 1, traçamos o ACF teórico do modelo x t 10w t. 7w t-1. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados para traçar o ACF teórico foram: acfma1ARMAacf (mac (0.7), lag. max10) 10 lags de ACF para MA (1) com theta1 0.7 lags0: 10 cria uma variável chamada lags que varia de 0 a 10. plot (Lags, acfma1, xlimc (1,10), ylabr, typeh, ACF principal para MA (1) com theta1 0,7) abline (h0) adiciona um eixo horizontal ao gráfico O primeiro comando determina o ACF e o armazena em um objeto Chamado acfma1 (nossa escolha de nome). O comando de plotagem (o terceiro comando) traça defasagens em relação aos valores de ACF para os retornos 1 a 10. O parâmetro ylab rotula o eixo y eo parâmetro principal coloca um título no gráfico. Para ver os valores numéricos do ACF basta usar o comando acfma1. A simulação e as parcelas foram feitas com os seguintes comandos. Xcarima. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 adiciona 10 para fazer a média 10. Padrões de simulação significam 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF para dados de amostras simulados) No Exemplo 2, traçamos o ACF teórico do modelo xt 10 wt. 5 w t-1 .3 w t-2. E depois simularam n 150 valores a partir deste modelo e traçaram a amostra de séries temporais ea amostra ACF para os dados simulados. Os comandos R utilizados foram acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 parcela (lags, acfma2, xlimc (1,10), ylabr, tipoh, ACF principal para MA (2) com theta1 0,5, (X, typeb, main Simulado MA (2) Series) acf (x, xlimc (1,10), x2, MainACF para dados simulados de MA (2) Apêndice: Prova de Propriedades de MA (1) Para estudantes interessados, aqui estão as provas para propriedades teóricas do modelo MA (1). Quando h 1, a expressão anterior 1 w 2. Para qualquer h 2, a expressão anterior 0 (x) é a expressão anterior x (x) A razão é que, por definição de independência do wt. E (w k w j) 0 para qualquer k j. Além disso, porque w t tem média 0, E (w j w j) E (w j 2) w 2. Para uma série de tempo, aplique este resultado para obter o ACF fornecido acima. Um modelo MA reversível é aquele que pode ser escrito como um modelo de ordem infinita AR que converge de modo que os coeficientes AR convergem para 0 à medida que nos movemos infinitamente para trás no tempo. Bem demonstrar invertibilidade para o modelo MA (1). Em seguida, substitui-se a relação (2) para wt-1 na equação (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-theta2w) No tempo t-2. A equação (2) torna-se Então substituimos a relação (4) para wt-2 na equação (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z-theta12z theta31w) Se continuássemos Infinitamente), obteríamos o modelo AR de ordem infinita (zt wt theta1 z - theta21z theta31z - theta41z pontos) Observe, no entanto, que se 1 1, os coeficientes multiplicando os desfasamentos de z aumentarão (infinitamente) Tempo. Para evitar isso, precisamos de 1 lt1. Esta é a condição para um modelo MA (1) invertible. Infinite Order MA model Na semana 3, bem ver que um modelo AR (1) pode ser convertido em um modelo de ordem infinita MA: (xt - mu wt phi1w phi21w pontos phik1 w dots sum phij1w) Esta soma de termos de ruído branco passado é conhecido Como a representação causal de um AR (1). Em outras palavras, x t é um tipo especial de MA com um número infinito de termos voltando no tempo. Isso é chamado de ordem infinita MA ou MA (). Uma ordem finita MA é uma ordem infinita AR e qualquer ordem finita AR é uma ordem infinita MA. Lembre-se na Semana 1, observamos que um requisito para um AR estacionário (1) é que 1 lt1. Vamos calcular o Var (x t) usando a representação causal. Esta última etapa usa um fato básico sobre séries geométricas que requer (phi1lt1) caso contrário, a série diverge. Navegação

No comments:

Post a Comment